Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0188723, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37754662

RESUMO

Human telomerase RNA (hTR) is overexpressed in many cancers and protects T cells from apoptosis in a telomerase-independent manner. The most prevalent cancer in the animal kingdom is caused by the highly oncogenic herpesvirus Marek's disease virus (MDV). MDV encodes a viral telomerase RNA (vTR) that plays a crucial role in MDV-induced tumorigenesis and shares all four conserved functional domains with hTR. In this study, we assessed whether hTR drives tumor formation in this natural model of herpesvirus-induced tumorigenesis. Therefore, we replaced vTR with hTR in the genome of a highly oncogenic MDV. Furthermore, we investigated the anti-apoptotic activity of vTR, hTR, and their counterpart in the chicken [chicken telomerase RNA (cTR)]. hTR was efficiently expressed and did not alter replication of the recombinant virus. Despite its conserved structure, hTR did not complement the loss of vTR in virus-induced tumorigenesis. Strikingly, hTR did not inhibit apoptosis in chicken cells, but efficiently inhibited apoptosis in human cells. Inverse host restriction has been observed for vTR and cTR in human cells. Our data revealed that vTR, cTR, and hTR possess conserved but host-specific anti-apoptotic functions that likely contribute to MDV-induced tumorigenesis. IMPORTANCE hTR is overexpressed in many cancers and used as a cancer biomarker. However, the contribution of hTR to tumorigenesis remains elusive. In this study, we assessed the tumor-promoting properties of hTR using a natural virus/host model of herpesvirus-induced tumorigenesis. This avian herpesvirus encodes a telomerase RNA subunit (vTR) that plays a crucial role in viral tumorigenesis and shares all conserved functional domains with hTR. Our data revealed that vTR and cellular TRs of humans and chickens possess host-specific anti-apoptotic functions. This provides important translational insights into therapeutic strategies, as inhibition of apoptosis is crucial for tumorigenesis.

2.
STAR Protoc ; 4(2): 102343, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270781

RESUMO

Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that infects immune cells and causes a deadly lymphoproliferative disease in chickens. Cytokines and monoclonal antibodies promote the survival of chicken lymphocytes in vitro. Here, we describe protocols for the isolation, maintenance, and efficient MDV infection of primary chicken lymphocytes and lymphocyte cell lines. This facilitates the investigation of key aspects of the MDV life cycle in the primary target cells of viral replication, latency, genome integration, and reactivation. For complete details on the use and execution of this protocol, please refer to Schermuly et al.,1 Bertzbach et al. (2019),2 and You et al.3 For a comprehensive background on MDV, please see Osterrieder et al.4 and Bertzbach et al. (2020).5.

3.
J Infect Dev Ctries ; 17(4): 565-570, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37159896

RESUMO

INTRODUCTION: Inclusion-body hepatitis (IBH) and hydropericardium syndrome (HPS) are highly infectious diseases caused by fowl adenoviruses (FAdVs). IBH and HPS cause major economic losses in poultry production. IBH is caused by multiple FAdV serotypes such as FAdV-11, FAdV8a, and FAdV8b; while HPS is mainly caused by the FAdV-4 serotype. In 2018, we detected FAdVs in West Bank - Palestine for the first time. This study aims to monitor the emergence of new FAdVs in broiler farms in Gaza Strip-Palestine in 2022. METHODOLOGY: The clinical signs, necropsy, and histopathological findings associated with IBH in the suspected birds were recorded. Polymerase chain reaction (PCR) was performed using primers matching the virus-encoded L1 loop of the hexon gene. The sequences of the L1 loop were analyzed and a phylogenetic tree was constructed and compared with the related FAdV field isolates and reference strains from different regions of the world available in GenBank. RESULTS: The infected broiler displayed FAdVs-induced clinical symptoms and pathological lesions with mortality rates ranging from 20-46%. The L1 loop sequences from the infected flocks were submitted to GenBank with accession numbers ON638995, ON872150, and ON872151. The identified L1 loop gene has high nucleotide homology (96.7-97.9%) to the highly pathogenic FAdV E serotype 8b strain FAdV_isolate_04-53357-122_Canada_2007 (GenBank: EF685489) and 94.5-94.6% to FAdV_10_Belgium_2010 isolate 11-15941 (GenBank: AF339924.1). Furthermore, the phylogenetic analysis indicated that they belong to FAdV-E serotype 8b. CONCLUSIONS: Our study reports the emergence of FAdV-E causing IBH disease in broiler chickens for the first time in Gaza in Palestine.


Assuntos
Galinhas , Hepatite A , Animais , Filogenia , Oriente Médio/epidemiologia , Adenoviridae
5.
Front Immunol ; 13: 908305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693787

RESUMO

The major histocompatibility complex (MHC) is crucial for appropriate immune responses against invading pathogens. Chickens possess a single predominantly-expressed class I molecule with strong associations between disease resistance and MHC haplotype. For Marek's disease virus (MDV) infections of chickens, the MHC haplotype is one of the major determinants of genetic resistance and susceptibility. VALO specific pathogen free (SPF) chickens are widely used in biomedical research and vaccine production. While valuable findings originate from MDV infections of VALO SPF chickens, their MHC haplotypes and associated disease resistance remained elusive. In this study, we used several typing systems to show that VALO SPF chickens possess MHC haplotypes that include B9, B9:02, B15, B19 and B21 at various frequencies. Moreover, we associate the MHC haplotypes to MDV-induced disease and lymphoma formation and found that B15 homozygotes had the lowest tumor incidence while B21 homozygotes had the lowest number of organs with tumors. Finally, we found transmission at variable levels to all contact birds except B15/B21 heterozygotes. These data have immediate implications for the use of VALO SPF chickens and eggs in the life sciences and add another piece to the puzzle of the chicken MHC complex and its role in infections with this oncogenic herpesvirus.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Animais , Carcinogênese/genética , Galinhas/genética , Resistência à Doença/genética , Haplótipos , Herpesvirus Galináceo 2/genética , Antígenos de Histocompatibilidade , Complexo Principal de Histocompatibilidade/genética
6.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34884662

RESUMO

Human cytomegalovirus (HCMV) is a major pathogenic herpesvirus that is prevalent worldwide and it is associated with a variety of clinical symptoms. Current antiviral therapy options do not fully satisfy the medical needs; thus, improved drug classes and drug-targeting strategies are required. In particular, host-directed antivirals, including pharmaceutical kinase inhibitors, might help improve the drug qualities. Here, we focused on utilizing PROteolysis TArgeting Chimeras (PROTACs), i.e., hetero-bifunctional molecules containing two elements, namely a target-binding molecule and a proteolysis-inducing element. Specifically, a PROTAC that was based on a cyclin-dependent kinase (CDK) inhibitor, i.e., CDK9-directed PROTAC THAL-SNS032, was analyzed and proved to possess strong anti-HCMV AD169-GFP activity, with values of EC50 of 0.030 µM and CC50 of 0.175 µM (SI of 5.8). Comparing the effect of THAL-SNS032 with its non-PROTAC counterpart SNS032, data indicated a 3.7-fold stronger anti-HCMV efficacy. This antiviral activity, as illustrated for further clinically relevant strains of human and murine CMVs, coincided with the mid-nanomolar concentration range necessary for a drug-induced degradation of the primary (CDK9) and secondary targets (CDK1, CDK2, CDK7). In addition, further antiviral activities were demonstrated, such as the inhibition of SARS-CoV-2 replication, whereas other investigated human viruses (i.e., varicella zoster virus, adenovirus type 2, and Zika virus) were found insensitive. Combined, the antiviral quality of this approach is seen in its (i) mechanistic uniqueness; (ii) future options of combinatorial drug treatment; (iii) potential broad-spectrum activity; and (iv) applicability in clinically relevant antiviral models. These novel data are discussed in light of the current achievements of anti-HCMV drug development.


Assuntos
Antivirais , Citomegalovirus , Inibidores de Proteínas Quinases , Animais , Humanos , Camundongos , Antivirais/farmacologia , Linhagem Celular , Quinase 9 Dependente de Ciclina , Citomegalovirus/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Inibidores de Proteínas Quinases/farmacologia , Replicação Viral/efeitos dos fármacos , Proteólise
7.
Microorganisms ; 9(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34361910

RESUMO

Marek's disease virus (MDV) is a highly cell-associated oncogenic alphaherpesvirus that causes lymphomas in various organs in chickens. Like other herpesviruses, MDV has a large and complex double-stranded DNA genome. A number of viral transcripts are generated by alternative splicing, a process that drastically extends the coding capacity of the MDV genome. One of the spliced genes encoded by MDV is the viral interleukin 8 (vIL-8), a CXC chemokine that facilitates the recruitment of MDV target cells and thereby plays an important role in MDV pathogenesis and tumorigenesis. We recently identified a novel vIL-8 exon (vIL-8-E3') by RNA-seq; however, it remained elusive whether the protein containing the vIL-8-E3' is expressed and what role it may play in MDV replication and/or pathogenesis. To address these questions, we first generated recombinant MDV harboring a tag that allows identification of the spliced vIL-8-E3' protein, revealing that it is indeed expressed. We subsequently generated knockout viruses and could demonstrate that the vIL-8-E3' protein is dispensable for MDV replication as well as secretion of the functional vIL-8 chemokine. Finally, infection of chickens with this vIL-8-E3' knockout virus revealed that the protein is not important for MDV replication and pathogenesis in vivo. Taken together, our study provides novel insights into the splice forms of the CXC chemokine of this highly oncogenic alphaherpesvirus.

8.
Microorganisms ; 9(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069313

RESUMO

Viral diseases remain a major concern for animal health and global food production in modern agriculture. In chickens, avian leukosis virus subgroup J (ALV-J) represents an important pathogen that causes severe economic loss. Until now, no vaccine or antiviral drugs are available against ALV-J and strategies to combat this pathogen in commercial flocks are desperately needed. CRISPR/Cas9 targeted genome editing recently facilitated the generation of genetically modified chickens with a mutation of the chicken ALV-J receptor Na+/H+ exchanger type 1 (chNHE1). In this study, we provide evidence that this mutation protects a commercial chicken line (NHE1ΔW38) against the virulent ALV-J prototype strain HPRS-103. We demonstrate that replication of HPRS-103 is severely impaired in NHE1ΔW38 birds and that ALV-J-specific antigen is not detected in cloacal swabs at later time points. Consistently, infected NHE1ΔW38 chickens gained more weight compared to their non-transgenic counterparts (NHE1W38). Histopathology revealed that NHE1W38 chickens developed ALV-J typical pathology in various organs, while no pathological lesions were detected in NHE1ΔW38 chickens. Taken together, our data revealed that this mutation can render a commercial chicken line resistant to highly pathogenic ALV-J infection, which could aid in fighting this pathogen and improve animal health in the field.

9.
J Virol ; 95(15): e0013121, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34011541

RESUMO

Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus of chickens that causes lymphomas in various organs. Most MDV genes are conserved among herpesviruses, while others are unique to MDV and may contribute to pathogenesis and/or tumor formation. High transcript levels of the MDV-specific genes MDV082, RLORF11, and SORF6 were recently detected in lytically infected cells; however, it remained elusive if the respective proteins are expressed and if they play a role in MDV pathogenesis. In this study, we first addressed if these proteins are expressed by inserting FLAG tags at their N or C termini. We could demonstrate that among the three genes tested, MDV082 is the only gene that encodes a protein and is expressed very late in MDV plaques in vitro. To investigate the role of this novel MDV082 protein in MDV pathogenesis, we generated a recombinant virus that lacks expression of the MDV082 protein. Our data revealed that the MDV082 protein contributes to the rapid onset of Marek's disease but is not essential for virus replication, spread, and tumor formation. Taken together, this study sheds light on the expression of MDV-specific genes and unravels the role of the late protein MDV082 in MDV pathogenesis. IMPORTANCE MDV is a highly oncogenic alphaherpesvirus that causes Marek's disease in chickens. The virus causes immense economic losses in the poultry industry due to the high morbidity and mortality, but also the cost of the vaccination. MDV encodes over 100 genes that are involved in various processes of the viral life cycle. Functional characterization of MDV genes is an essential step toward understanding the complex virus life cycle and MDV pathogenesis. Here, we have identified a novel protein encoded by MDV082 and two potential noncoding RNAs (RLORF11 and SORF6). The novel MDV082 protein is not needed for efficient MDV replication and tumor formation. However, our data demonstrate that the MDV082 protein is involved in the rapid onset of Marek's disease.


Assuntos
Transformação Celular Viral/genética , Herpesvirus Galináceo 2/genética , Doença de Marek/virologia , Proteínas Virais/genética , Animais , Linhagem Celular , Galinhas/virologia , Aves Domésticas/virologia , Replicação Viral/genética
10.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32967954

RESUMO

Gallid herpesvirus type 2 (GaHV-2) is an oncogenic alphaherpesvirus that induces malignant T-cell lymphoma in chicken. GaHV-2 encodes a viral telomerase RNA subunit (vTR) that plays a crucial role in virus-induced tumorigenesis, enhances telomerase activity, and possesses functions independent of the telomerase complex. vTR is driven by a robust viral promoter, highly expressed in virus-infected cells, and regulated by two c-Myc response elements (c-Myc REs). The regulatory mechanisms involved in controlling vTR and other genes during viral replication and latency remain poorly understood but are crucial to understanding this oncogenic herpesvirus. Therefore, we investigated DNA methylation patterns of CpG dinucleotides found in the vTR promoter and measured the impact of methylation on telomerase activity. We demonstrated that telomerase activity was considerably increased following viral reactivation. Furthermore, CpG sites within c-Myc REs showed specific changes in methylation after in vitro reactivation and in infected animals over time. Promoter reporter assays indicated that one of the c-Myc REs is involved in regulating vTR transcription, and that methylation strongly influenced vTR promoter activity. To study the importance of the CpG sites found in c-Myc REs in virus-induced tumorigenesis, we generated recombinant virus containing mutations in CpG sites of c-Myc REs together with the revertant virus by two-step Red-mediated mutagenesis. Introduced mutations in the vTR promoter did not affect the replication properties of the recombinant viruses in vitro In contrast, replication of the mutant virus in infected chickens was severely impaired, and tumor formation completely abrogated. Our data provides an in-depth characterization of c-Myc oncoprotein REs and the involvement of DNA methylation in transcriptional regulation of vTR.IMPORTANCE Previous studies demonstrated that telomerase RNAs possess functions that promote tumor development independent of the telomerase complex. vTR is a herpesvirus-encoded telomerase RNA subunit that plays a crucial role in virus-induced tumorigenesis and is expressed by a robust viral promoter that is highly regulated by the c-Myc oncoprotein binding to the E-boxes. Here, we demonstrated that the DNA methylation patterns in the functional c-Myc response elements of the vTR promoter change upon reactivation from latency, and that demethylation strongly increases telomerase activity in virus-infected cells. Moreover, the introduction of mutation in the CpG dinucleotides of the c-Myc binding sites resulted in decreased vTR expression and complete abrogation of tumor formation. Our study provides further confirmation of the involvement of specific DNA methylation patterns in the regulation of vTR expression and vTR importance for virus-induced tumorigenesis.


Assuntos
Metilação de DNA/fisiologia , Herpesvirus Galináceo 2/genética , Regiões Promotoras Genéticas , RNA Viral/genética , Telomerase/genética , Animais , Carcinogênese/genética , Linhagem Celular , Galinhas , Regulação Viral da Expressão Gênica , Herpesvirus Galináceo 2/enzimologia , Herpesvirus Galináceo 2/patogenicidade , Doença de Marek/virologia , Mutagênese Sítio-Dirigida , Mutação , RNA , Replicação Viral
11.
Pathogens ; 9(2)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991609

RESUMO

Brucellosis is a highly contagious bacterial disease affecting a wide range of animals, as well as humans. The existence of the clinically diagnosed brucellosis in avian species is controversially discussed. In the current study, we set to summarize the current knowledge on the presence of brucellae in avian species. Anti-Brucella antibodies were monitored in different avian species using classical diagnostic tools. Experimental infection of chicken embryos induced the disease and resulted in the development of specific lesions. Few empirical studies have been performed in adult poultry. However, the isolation of brucellae from naturally-infected chickens has not been possible yet.

12.
Oncogene ; 38(10): 1778-1786, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30846849

RESUMO

The telomerase RNA subunit (TR) is overexpressed in many tumors; however, the contribution of TR in cancer formation remains elusive. The most frequent clinically diagnosed cancer in the animal kingdom is caused by the highly oncogenic herpesvirus Marek's disease virus (MDV). MDV encodes a TR (vTR) that plays an important role in virus-induced tumorigenesis and shares 88% sequence identity with its cellular homologue. To determine if the cellular TR possesses pro-oncogenic activity, we replaced vTR with the cellular homologue in the virus genome. Insertion of cellular TR resulted in a strong overexpression in virus infected cells, while virus replication was not affected. Strikingly, cellular TR promoted tumor formation as efficient as vTR, while tumorigenesis was severely impaired in the absence of vTR. Our data provide the first evidence that overexpression of cellular TR can contribute to tumor formation in vivo using this natural virus-host model for herpesvirus-induced oncogenesis.


Assuntos
Transformação Celular Neoplásica/genética , Herpesvirus Galináceo 3/fisiologia , Doença de Marek/virologia , RNA/genética , Telomerase/genética , Animais , Células Cultivadas , Embrião de Galinha , Feminino , Herpesvirus Galináceo 3/genética , Masculino , Doença de Marek/enzimologia , RNA/metabolismo , Telomerase/metabolismo , Replicação Viral
13.
Viruses ; 11(3)2019 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-30884829

RESUMO

Marek's disease virus (MDV) is an oncogenic alphaherpesvirus that infects chickens and poses a serious threat to poultry health. In infected animals, MDV efficiently replicates in B cells in various lymphoid organs. Despite many years of research, the viral transcriptome in primary target cells of MDV remained unknown. In this study, we uncovered the transcriptional landscape of the very virulent RB1B strain and the attenuated CVI988/Rispens vaccine strain in primary chicken B cells using high-throughput RNA-sequencing. Our data confirmed the expression of known genes, but also identified a novel spliced MDV gene in the unique short region of the genome. Furthermore, de novo transcriptome assembly revealed extensive splicing of viral genes resulting in coding and non-coding RNA transcripts. A novel splicing isoform of MDV UL15 could also be confirmed by mass spectrometry and RT-PCR. In addition, we could demonstrate that the associated transcriptional motifs are highly conserved and closely resembled those of the host transcriptional machinery. Taken together, our data allow a comprehensive re-annotation of the MDV genome with novel genes and splice variants that could be targeted in further research on MDV replication and tumorigenesis.


Assuntos
Linfócitos B/virologia , Genes Virais , Herpesvirus Galináceo 2/genética , Doença de Marek/virologia , Isoformas de Proteínas/genética , Transcriptoma , Animais , Linfócitos B/imunologia , Células Cultivadas , Galinhas , Expressão Gênica , Herpesvirus Galináceo 2/patogenicidade , Sequenciamento de Nucleotídeos em Larga Escala , Splicing de RNA , Organismos Livres de Patógenos Específicos
14.
Sci Rep ; 8(1): 209, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317752

RESUMO

Marek's disease virus (MDV) is an alphaherpesvirus that causes fatal lymphomas in chickens and is used as a natural virus-host model for herpesvirus-induced tumorigenesis. MDV encodes a telomerase RNA subunit (vTR) that is crucial for efficient MDV-induced lymphoma formation; however, the mechanism is not completely understood. Similarly, Epstein Barr-virus (EBV) encodes two RNAs (EBER-1 and EBER-2) that are highly expressed in EBV-induced tumor cells, however their role in tumorigenesis remains unclear. Intriguingly, vTR and EBER-1 have interaction partners in common that are highly conserved in humans and chickens. Therefore, we investigated if EBER-1 and/or EBER-2 can complement the loss of vTR in MDV-induced tumor formation. We first deleted vTR (v∆vTR) and replaced it by either EBER-1 or EBER-2 in the very virulent RB-1B strain. Insertion of either EBER-1 or EBER-2 did not affect MDV replication and their expression levels were comparable to vTR in wild type virus. Intriguingly, EBER-2 restored tumor formation of MDV that lacks vTR. EBER-1 partially restored MDV oncogenicity, while tumor formation was severely impaired in chickens infected with v∆vTR. Our data provides the first evidence that EBERs possess tumor-promoting properties in vivo using this natural model for herpesvirus-tumorigenesis.


Assuntos
Carcinogênese , Mardivirus/genética , RNA Viral/genética , RNA/genética , Telomerase/genética , Animais , Células Cultivadas , Embrião de Galinha , Galinhas , Teste de Complementação Genética , Mardivirus/fisiologia , RNA/metabolismo , RNA Viral/metabolismo , Telomerase/deficiência , Telomerase/metabolismo , Replicação Viral
15.
Viruses ; 9(7)2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28677643

RESUMO

Telomeres protect the ends of vertebrate chromosomes from deterioration and consist of tandem nucleotide repeats (TTAGGG)n that are associated with a number of proteins. Shortening of the telomeres occurs during genome replication, thereby limiting the replication potential of somatic cells. To counteract this shortening, vertebrates encode the telomerase complex that maintains telomere length in certain cell types via de novo addition of telomeric repeats. Several herpesviruses, including the highly oncogenic alphaherpesvirus Marek's disease virus (MDV), harbor telomeric repeats (TMR) identical to the host telomere sequences at the ends of their linear genomes. These TMR facilitate the integration of the MDV genome into host telomeres during latency, allowing the virus to persist in the host for life. Integration into host telomeres is critical for disease and tumor induction by MDV, but also enables efficient reactivation of the integrated virus genome. In addition to the TMR, MDV also encodes a telomerase RNA subunit (vTR) that shares 88% sequence identity with the telomerase RNA in chicken (chTR). vTR is highly expressed during all stages of the virus lifecycle, enhances telomerase activity and plays an important role in MDV-induced tumor formation. This review will focus on the recent advances in understanding the role of viral TMR and vTR in MDV pathogenesis, integration and tumorigenesis.


Assuntos
Carcinogênese , Herpesvirus Galináceo 2/fisiologia , Doença de Marek/virologia , Telomerase/metabolismo , Telômero/metabolismo , Integração Viral , Animais , Galinhas , Herpesvirus Galináceo 2/patogenicidade , Interações Hospedeiro-Patógeno , Doença de Marek/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...